Влияние гуминовых веществ на рост и развитие растений

Оглавление

Введение
1. Биосферные функции гуминовых веществ, влияющие на развитие растений.
2. Влияние уровня гумусированности почвы на урожай с\х растений
3. Действие гуминовых веществ на растения
3.1 Влияние гуматов на свойства почвы
3.2 Влияние гуматов на общее развитие растений, семена и корневую систему
4. Заключение
Список использованной литературы


Введение

Все гуминовые вещества образуются в результате постмортального (посмертного) превращения органических остат­ков. Превращение органических остатков в гуминовые вещества по­лучило название процесса гумификации. Он идет вне живых организмов, как с их участием, так и пу­тем чисто химических реакций окисления, восста­новления, гидролиза, конденсации и др.

В отличие от живой клетки, в которой синтез биополимеров осуществляется в соответствии с генетическим ко­дом, в процессе гумификации нет какой-либо уста­новленной программы, поэтому могут возникать любые соединения, как более простые, так и более сложные, чем исходные биомолекулы. Образующие­ся продукты вновь подвергаются реакциям синтеза или разложения, и такой процесс идет практически беспрерывно.

Гуминовые вещества составляют специфическую группу высокомолекулярных темноокрашенных веществ, образующихся в процессе разложения органических остатков в почве путем синтезирования из продуктов распада и гниения отмерших растительных и животных тканей. Количество углерода, связанного в гуминовых кислотах почв, торфа, углей, почти в четыре раза превосходит количество углерода, связанного в органическом веществе всех растений и животных на земном шаре. Но гуминовые вещества не просто отходы жизненных процессов, они являются естественными и важнейшими продуктами совместной эволюции минеральных веществ и растительного мира Земли.

Гуминовые вещества могут влиять на растения непосредственно, являясь источником элементов минерального питания (пул элементов питания). В органическом веществе почвы содержится значительное количество элементов питания, растительное сообщество потребляет их после преобразования почвенными микроорганизмами в минеральную форму. Именно в минеральной форме питательные вещества поступают в растительную биомассу.

Гуминовые вещества могут влиять косвенно на растения, т. е. влиять на физико-механические, физико-химические и биологические свойства почвы. Оказывая комплексное воздействие на почву, улучшают ее физические, химические и биологические свойства. Наряду с этим, выполняют протекторную функцию, связывая тяжелые металлы, радионуклиды и органические токсиканты, препятствуя тем самым их попаданию в растения. Таким образом, воздействуя на почву, опосредованно влияют и на растения, способствуя их более активному росту и развитию.

В последнее время разрабатываются новые направления влияния гуминовых веществ на растения, а именно: Растения, это гетеротрофы, питающиеся непосредственно гуминовыми веществами; Гуминовые вещества способны оказывать гормональное воздействие на растение, тем самым стимулировать его рост и развитие.

Вверх к оглавлению

1. Биосферные функции гуминовых веществ влияющие на развитие растений

В последние годы ученые выявили общие биохимические и экологические функции гуминовых веществ и их влияние на развитие растений. Среди важнейших можно выделить следующие:

Аккумулятивная - способность гуминовых веществ накапливать долгосрочные запасы всех элементов питания, углеводов, аминокислот в различных средах;

Транспортная - образование комплексных органоминеральных соединений с металлами и микроэлементами, которые активно мигрируют в растения;

Регуляторная - гуминовые вещества формируют окраску почвы и регулируют минеральное питание, катионный обмен, буферность и окислительно-восстановительные процессы в почве;

Протекторная - путем сорбции токсичных веществ и радионуклидов гуминовые вещества предотвращают их поступление в растения.

Совмещение всех этих функций обеспечивает повышенные урожаи и необходимое качество с/х продукции. Особенно важно подчеркнуть положительный эффект от действия гуминовых веществ при неблагоприятных условиях воздействия среды: низкие и высокие температуры, недостаток влаги, засоление, скопление ядохимикатов и наличие радионуклидов.

Неоспорима роль гуминовых веществ и как физиологически активных веществ. Они изменяют проницаемость клеточных мембран, повышают активность ферментов, стимулируют процессы дыхания, синтеза белков и углеводов. Они увеличивают содержание хлорофилла и продуктивность фотосинтеза, что в свою очередь создает предпосылки получения экологически чистой продукции.

При сельскохозяйственном использовании земли необходимо постоянное пополнение гумуса в почве для поддержания необходимой концентрации гуминовых веществ.

До настоящего времени это пополнение осуществлялось в основном путем внесения компостов, навоза и торфа. Однако поскольку содержание собственно гуминовых веществ в них относительно невелико, то нормы их внесения очень велики. Это увеличивает транспортные и другие производственные издержки, которые многократно превышают стоимость самих удобрений. Кроме того, в них содержатся семяна сорняков, а также болезнетворные бактерии.

Для получения высоких и устойчивых урожаев недостаточно надеяться на биологические возможности сельскохозяйственных культур, которые, как известно, используются лишь на 10-20%. Конечно необходимо использовать высокоурожайные сорта, эффективные приемы агро- и фитотехники, удобрения, но уже нельзя обойтись и без регуляторов роста растений, которые к концу двадцатого века играют уже не менее важную роль, чем пестициды и удобрения.

Вверх к оглавлению

2. Влияние уровня гумусированности почвы на урожай с\х растений

Высокогумусированные почвы отличаются более высоким содержанием физиологически активных веществ. Гумус активизирует биохимические и физиологические процессы, повышает обмен веществ и общий энергетический уровень процессов в растительном организме, способствует усиленному поступлению в него элементов питания, что сопровождается повышением урожая и улучшением его качества.

В литературе накоплен экспериментальный материал, показывающий тесную зависимость урожая от уровня гумусированности почв. Коэффициент корреляции содержания гумуса в почве и урожая составляет 0,7...0,8 (данные ВНИПТИОУ, 1989). Так, в исследованиях Белорусского научно-исследовательского института почвоведения и агрохимии (БелНИИПА) увеличение количества гумуса в дерново-подзолистых почвах на 1% (в пределах его изменения от 1,5 до 2,5...3%) повышает урожайность зерна озимой ржи и ячменя на 10... 15 ц/га. В колхозах и совхозах Владимирской области при содержании гумуса в почве до 1% урожай зерновых в период 1976-1980 гг. не превышал 10 ц/га, при 1,6...2% составлял 15 ц/га, 3,5...4% - 35 ц/га. В Кировской области прирост гумуса на 1% окупается получением дополнительно 3...6 ц зерна, в Воронежской - 2 ц, в Краснодарском крае - 3...4 ц/га.

Еще более существенна роль гумуса в увеличении отдачи при умелом применении химических удобрений, эффективность его при этом увеличивается в 1,5...2 раза. Однако необходимо помнить, что химические удобрения, внесенные в почву, вызывают усиленное разложение гумуса, что приводит к снижению его содержания.

Практика современного сельскохозяйственного производства показывает, что повышение содержания гумуса в почвах является одним из основных показателей их окультурирования. При низком уровне гумусовых запасов внесение одних минеральных удобрений не приводит к стабильному повышению плодородия почв. Более того, применение высоких доз минеральных удобрений на бедных органическим веществом почвах часто сопровождается неблагоприятным действием их на почвенную микро- и макрофлору, накоплением в растениях нитратов и других вредных соединений, а во многих случаях и снижением урожая сельскохозяйственных культур.

Вверх к оглавлению

3. Действие гуминовых веществ на растения

Гуминовые кислоты представляют собой продукт естественной биохимической трансформации органического вещества в биосфере. Они являются основной частью органического вещества почвы - гумуса, играя ключевую роль в круговороте веществ в природе и поддержании почвенного плодородия.

Гуминовые кислоты имеют разветвленную молекулярную структуру, включающую большое количество функциональных групп и активных центров. Формирование этих природных соединений происходит под воздействием физико-химических процессов, протекающих в почве и деятельности почвенных организмов. Источниками синтеза гуминовых кислот служат растительные и животные остатки, а также продукты жизнедеятельности почвенной микрофлоры.

Таким образом, гуминовые кислоты являются аккумуляторами органического вещества почвы - аминокислот, углеводов, пигментов, биологически активных веществ и лигнина. Кроме того, в гуминовых кислотах концентрируются ценные неорганические компоненты почвы - элементы минерального питания (азот, фосфор, калий), а так же микроэлементы (железо, цинк, медь, марганец, бор, молибден и т.д.).

Под воздействием естественных процессов, протекающих в почве, все вышеперечисленные компоненты включаются в единый молекулярный комплекс - гуминовые кислоты. Многообразие исходных компонентов для синтеза данного комплекса обуславливает сложную молекулярную структуру и, как следствие, широкий спектр физических, химических и биологических воздействий гуминовых кислот на почву и растение.

Гуминовые кислоты, как составная часть гумуса, встречаются практически на всех типах почв. Они входят в состав твердых горючих ископаемых (твердые и мягкие бурые угли), а также торфа и сапропеля. Однако в естественном состоянии эти соединения малоактивны и практически полностью находятся в нерастворимой форме. Физиологически активными являются лишь соли, образуемые гуминовыми кислотами со щелочными металлами - натрием, калием (гуматы).

Вверх к оглавлению

3.1 Влияние гуматов на свойства почвы

Влияние гуматов на физические свойства почв

Механизм данного воздействия меняется в зависимости от типа почв.

На тяжелых глинистых почвах гуматы способствуют взаимному отталкиванию глинистых частиц за счет удаления излишних солей и разрушения компактной трехмерной структуры глины. В результате, почва становится более рыхлой, из нее легче испаряется излишняя влага, улучшается поступление воздуха, что облегчает дыхание и продвижение корней.

При внесении в легкие почвы, гуматы обволакивают и склеивают между собой минеральные частицы почвы, способствуя созданию очень ценной водопрочной комковато- зернистой структуры, улучшающей водопропускную и водоудерживающую способность почвы, ее воздухопроницаемость. Названные особенности обусловлены способностью гуминовых кислот к гелеобразованию.

Удержание влаги. Удержание воды гуматами происходит за счет образования водородных связей между молекулами воды и заряженными группами гуматов, а также адсорбированными на них ионами металлов. В результате испарение воды снижается в среднем на 30%, что приводит к повышению усвоения влаги растениями на аридных и песчаных почвах.

Формирование темной окраски. Гуматы окрашивают почву в темный цвет. Это особенно важно для районов с холодным и умеренным климатом, поскольку темная окраска улучшает поглощение и накопление почвами солнечной энергии. В результате температура почвы повышается.

Влияние гуматов на химические свойства почв и свойства почвенной влаги.

По своей природе гуминовые кислоты являются полиэлектролитами. В комплексе с органическими и минеральными частицами почвы они образуют почвенный поглощающий комплекс. Обладая большим количеством различных функциональных групп, гуминовые кислоты способны адсорбировать и удерживать на себе поступающие в почву питательные вещества, макро- и микроэлементы. Удерживаемые гуминовыми кислотами питательные вещества не связываются почвенными минералами и не вымываются водой, находясь в доступном для растений состоянии.

Увеличение буферной емкости почвы. Внесение гуматов увеличивает буферную емкость почв, то есть способность почвы поддерживать естественный уровень рН даже при избыточном поступлении кислых или щелочных агентов. Так, при внесении, гуматы способны снимать излишнюю кислотность почв, что со временем дает возможность высевать на этих полях культуры, чувствительные к повышенной кислотности.

Влияния гуматов на транспорт питательных веществ и микроэлементов в растения.

В отличии от свободных гуминовых кислот, гуматы являются водорастворимыми подвижными соединениями. Адсорбируя питательные вещества и микроэлементы, они способствуют их перемещению из почвы в растения.
При внесении гуматов наблюдается четкая тенденция увеличения содержания подвижного фосфора (в 1,5-2 раза), обменного калия и усваиваемого азота (в 2-2,5 раза) в пахотном слое почвы.

Все микроэлементы, являясь переходными металлами, (кроме бора и йода), образуют с гуматами подвижные хелатные комплексы, легко проникающие в растения, что обеспечивает их усвоение, а железо и марганец, по мнению ученых, усваиваются исключительно в виде гуматов этих металлов.

Предположительный механизм данного процесса сводится к тому, что гуматы при определенных условиях способны поглощать ионы металлов, высвобождая их при изменении условий. Присоединение положительно заряженных ионов металлов происходит за счет отрицательно заряженных функциональных групп гуминовых кислот (карбоксильных, гидроксильных и др.).

В процессе поглощения корнями растений воды растворимые гуматы металлов подходят к клеткам корня на близкое расстояние. Отрицательный заряд корневой системы превышает отрицательный заряд гуматов, что ведет к отщеплению ионов металлов от молекул гуминовых кислот и поглощению ионов клеточной мембраной.

Многие исследователи полагают, что небольшие молекулы гуминовых кислот вместе с закрепленными на них ионами металлов и другими питательными веществами могут поглощаться и усваиваться растением непосредственно.
Благодаря описанным механизмам улучшается почвенное питание растений, что способствует их более эффективному росту и развитию.

Влияние гуматов на биологические свойства почв.

Гуминовые кислоты являются источниками доступных фосфатов и углерода для микроорганизмов. Молекулы гуминовых кислот способны образовывать крупные агрегаты, на которых идет активное развитие колоний микроорганизмов. Таким образом, гуматы значительно интенсифицируют деятельность разных групп микроорганизмов, с которыми тесно связана мобилизация питательных веществ почвы и превращение потенциального плодородия в эффективное.
За счет роста численности силикатных бактерий происходит постоянное восполнение усвоенного растениями обменного калия.

Гуматы увеличивают в почве численность микроорганизмов, разлагающих труднорастворимые минеральные и органические соединения фосфора.

Гуматы улучшают обеспеченность почвы усвояемыми запасами азота: численность аммонифицирующих бактерий возрастает в три - пять раз, в отдельных случаях фиксировалось десятикратное увеличение аммонификаторов; количество нитрифицирующих бактерий увеличивается в 3-7 раз. За счет улучшения условий жизнедеятельности свободноживущих бактерий почти в 10 раз возрастает их способность к фиксации молекулярного азота из атмосферы.

В результате этого почва обогащается доступными питательными элементами. При разложении органического вещества образуется большое количество органических кислот и углекислоты. Под их воздействием труднодоступные минеральные соединения фосфора, кальция, калия, магния переходят в доступные для растения формы.

Протекторные свойства гуматов

Комплексное воздействие гуматов на почву обеспечивает их протекторные свойства.
Необратимое связывание тяжелых металлов и радионуклидов. Данное свойство гуматов особенно актуально в условиях повышенной техногенной нагрузки на почвы. Соединения свинца, ртути, мышьяка, никеля и кадмия, выделяющиеся при сжигании каменного угля, работе металлургических предприятий и электростанций попадают в почву из атмосферы в виде пыли и золы, а также с выхлопными газами автотранспорта. В то же время во многих регионах значительно повысился уровень радиационного загрязнения.
При внесении в почву гуматы необратимо связывают тяжелые металлы и радионуклиды. В результате образуются нерастворимые малоподвижные комплексы, которые выводятся из круговорота веществ в почве. Таким образом, гуматы препятствуют попаданию данных соединений в растения, а следовательно, и в сельскохозяйственную продукцию.

Наряду с этим активация гуматами микрофлоры приводит к дополнительному обогащению почвы гуминовыми кислотами. В результате за счет описанного выше механизма почва становится более устойчивой к техногенному загрязнению.
Ускорение разложения органических экотоксикантов. За счет активации деятельности почвенных микроорганизмов гуматы способствуют ускоренному разложению токсичных органических соединений, образующихся при сжигании топлива, а также ядохимикатов.
Многокомпонентный состав гуминовых кислот позволяет им эффективно сорбировать труднодоступные органические соединения, снижая их токсичность для растений и человека.

Вверх к оглавлению

3.2 Влияние гуматов на общее развитие растений, семена и корневую систему

Интенсификация физико-химических и биохимических процессов. Гуматы повышают активность всех клеток растения. В результате возрастает энергия клетки, улучшаются физико-химические свойства протоплазмы, интенсифицируется обмен веществ, фотосинтез и дыхание растений.

Как следствие, ускоряется деление клеток, а значит, происходит улучшение общего роста растения. Улучшение питания растений. В результате применения гуматов активно развивается корневая система, усиливается корневое питание растений, а также всасывание влаги. Интенсификации корневого питания способствует комплексное воздействие гуматов на почву. Увеличение биомассы растения и активизация обмена веществ ведёт к усилению фотосинтеза и накоплению растениями углеводов.

Повышение устойчивости растений. Гуматы являются неспецифическими активаторами иммунной системы. В результате обработки гуматами значительно повышается устойчивость растений к различным заболеваниям. Чрезвычайно эффективным является замачивание семян в растворах гуматов с целью профилактики семенных инфекций и в особенности корневых гнилей. Наряду с этим при обработке гуматами повышается устойчивость растений к неблагоприятным факторам внешней среды - экстремальным температурам, переувлажнению, сильному ветру.

Влияние гуматов на семена

Благодаря обработке препаратами на основе гуминовых веществ повышается устойчивость семян к заболеваниям и травматическим повреждениям, происходит освобождение от поверхностных инфекций.

При обработке у семян повышается всхожесть, энергия прорастания, стимулируется рост и развитие проростков.
Таким образом, обработка увеличивает всхожесть семян и предотвращает развитие грибковых заболеваний, в особенности корневых инфекций.

Влияние гуматов на корневую систему

Увеличивается проницаемость мембраны клеток корня. В результате улучшается проникновение питательных веществ и микроэлементов из почвенного раствора в растение. Вследствие чего питательные вещества поступают в основном в виде комплексов с гуматами.

Улучшается развитие корневой системы, усиливается закрепление растений в почве, то есть растения становятся более устойчивыми к сильным ветрам, смыву в результате обильного выпадения осадков и эрозионным процессам.
Особенно эффективно на культурах со слаборазвитой корневой системой: яровой пшенице, ячмене, овсе, рисе, гречихе.

Развитие корневой системы интенсифицирует поглощение растением влаги и кислорода, а также почвенное питание.
В результате в корневой системе усиливается синтез аминокислот, сахаров, витаминов и органических кислот. Усиливается обмен веществ между корнями и почвой. Выделяемые корнями органические кислоты (угольная, яблочная и др.) активно воздействуют на почву, увеличивая доступность питательных веществ и микроэлементов.

Вверх к оглавлению

4. Заключение

Гуминовые вещества, без сомнения, оказывают влияние на рост и развитие растений. Органическое вещество почвы служит источником элементов питания для растений. Микроорганизмы, разлагая гумусовые вещества, снабжают растения элементами питания в минеральной форме.

Гуминовые вещества оказывают значительное воздействие на комплекс свойств почвы, тем самым опосредованно влияют на развитие растений.

Гуминовые вещества, улучшая физико-химические, химические и биологические свойства почвы стимулируют более интенсивный рост и развитие растений.

Также немало важное значение, в настоящее время, в связи с интенсивным усилением антропогенного влияния на окружающую в среду в целом, и на почву в частности, приобретает протекторная функция гуминовых веществ. Гуминовые вещества связывают токсиканты и радионуклиды, и как следствие этого способствуют получению экологически чистой продукции.

Гуминовые вещества оказывают, безусловно, благоприятное влияние, как на почву, так и на растения.

Вверх к оглавлению

Список использованной литературы.

  1. Александрова Л.Н. Органическое вещество почв и процессы его трансформации. Л., Наука, 1980,
  2. Орлов Д. С. Гумусовые кислоты почв и общая теория гумификации. М.: Изд-во МГУ, 1990.
  3. Пономарева В.В., Плотникова Т.А. Гумус и почвообразование. Л., Наука, 1980,
  4. Тюрин И.В. Органическое вещество почв и его роль в почвообразовании и плодородии. Учение о почвенном гумусе. Сельхозгиз, 1967.
  5. Тейт Р., III. Органическое вещество почвы. М.: Мир, 1991..
  6. Христева Л.А.. Стимулирующее влияние гуминовой кислоты на рост высших растений и природа этого явления. 1957.
  7. Гуминовые вещества в биосфере. Под ред. Д.С. Ор­лова. М.: Наука, 1993.
Нет комментариев. Ваш будет первым!